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Abstract. Using the augmented space formalism introduced previously. a dynamical cluster 
coherent potential is developed to study the variation of resistivity with temperature. at low 
temperatures. for dirty alloys whose electrons near the Fermi level are sluggish. For high 
enough disorder at the onset of localization wc observe a minimum in  the resistivity at low 
temperatures and an anomalous temperature coefficient of resistivity in  this regime. 

1. Introduction 

The role played by electron-phonon coupling in determining resistivity has been studied 
in two limiting situations. For metallic systems with conduction electrons having a high 
mobility ( p  = 1-10 pQ cm), the introduction of a thermal bath interacting with the 
conduction sea increases resistivity. This follows directly from the Boltzmann equation 
and its variational treatment leading to Mattheissen’s rule: p > p0 + p(T ) ,  where po is 
the residual resistivity. The thermal coefficient of resistivity (TCR) is always positive. In 
the opposite case of very dirty systems where the electrons at the Fermi level are 
localized, the coupling with the phonon bath actually provides a mechanism to produce 
non-zero conductivity. The TCR is negative (anomalous) at low temperature regimes. 
Intermediate in nature are the Mooij alloys with p = 150-600 pQ cm whose sluggish 
conduction electrons have very low mobility (Mooij 1973). These also exhibit negative 
TCR at low temperatures. In such systems the Boltzmann formalism with its weak 
scattering basis breaks down. Girvin and Jonsson (1980, hereafter called GJ)  first intro- 
duced a theoretical basis which spans the Boltzmann and the hopping conduction 
regimes. The mechanism on which these authors focused was the ability of the sluggish 
conduction electrons to exchange energy with the phonon bath, leading to an increase 
in conductivity, and not one which relied on any special features of the density of states 
or static structure factors. GJ correctly expressed reservations about the earlier CPA 
treatments (Chen et a1 1972, Brouers and Brauwers 1975) on two grounds. First, the 
necessary adiabatic approximation breaks down, because the sluggish electrons spend 
a time near a vibrating ion core of the same order of magnitude as the inverse frequency 
with which the ion vibrates. We cannot decouple the electron and the phonon degrees 
of freedom. The static CPA was shown by this author (Mookerjee 1990, referred to as I), 
to correspond exactly to the adiabatic approximation. Secondly, in these dirty alloys we 
are in a strong scattering regime where the CPA is itself incapable of predicting the onset 
of localization (sluggishness) (Haydock and Mookerjee 1974). 

0953-8984/90/479399 + 10 $03.50 0 1990 IOP Publishing Ltd 9399 



9400 A Mookerjee 

Recently this author has introduced a  dynamical^^^ (see I) based on the augmented 
space formalism first introduced for static disorder problems (Mookerjee 1973). The 
dynamical CPA treats the electronic and the thermal bath degrees of freedom on the 
same footing and enables us to go beyond the adiabatic approximation. In case the 
characteristic times associated with the different degrees of freedom are on very different 
scales, this dynamical CPA was demonstrated to be equivalent to various expressions 
earlier obtained by Sumi (1974) and Girvin and Jonson. In this communication we shall 
focus on systems with sluggish electrons in the vicinity of the Fermi level. We shall 
further modify the dynamical CPA to include the contribution of the so-called maximally 
crossed diagrams in order to introduce features which revalidate the modified approxi- 
mation in the regimes near the onset of localization (Economou 1983, Chitnavis 1985). 

The aim of this communication is to improve upon the ideas of GJ in two specific 
aspects. First, GJ treated the dynamical disorder within a perturbation approach while 
the static disorder was treated exacdy numerically on a Bethe lattice. The assumption 
made, though not explicitly stated, was that the effects of the static and dynamic disorder 
were uncorrelated. The last assumption was shown in I to be invalid in specific examples. 
We shall treat both the static and dynamic disorder on the same footing. Second, the 
modification of the CPA to include the maximally crossed diagrams will allow us, in 
conjunction with the recursion method of Haydock et a/ (1972). to treat conductivity on 
realistic lattices (Mookerjee er a/ 1985, Mookerjee 1986) and avoid the less convincing 
estimates of the vertex term of GJ  on Cayley trees and the tedious Monte Carlo 
justifications. 

2. Conductivity and TCR 

We shall study the effect of a thermal bath on the conductivity of dirty systems in the 
strong scattering regime. These systems have resistivities in the range 150-600 ,uQ cm 
and, in the absence of the phonon bath, the electronic states near the Fermi level have 
very low mobilities. These sluggish electrons are characterized by timescales rc related 
to their lifetimes in the vicinity of a particular ion and z, -- O(z,,), where z,] is the 
timescale associated with the bath ground state. The adiabatic approximation breaks 
down and our dynamical disorder method comes into its own. In the strong scattering 
regime, near Anderson localization, the Boltzmann formalism also breaks down and we 
shall use the Kubo formalism to go further. 

Suppose that at a time t the electron is localized about an ion situated at r,. After a 
time to, in the presence of a bath, the configuration may have changed to one which 
allows the electron to leak out. Our arguments would suggest that as long as t,, 3 t,, the 
coupling with the phonon bath may enhance conductivity in some temperature ranges. 
This is the mechanism we wish to study. 

We should note, however, that in any concrete example there may be other mech- 
anisms which enhance conductivity, like special features of the density of states at the 
Fermi level (Chen et a/ 1972), interband transitions (Allen and Chakraborty 1978) or 
Kondo-like tunnelling (Tsuei 1978, Black and Gyorffy 1978). There is no a priori 
argument to suggest which of these mechanisms is dominant. In this application we shall 
not look at these mechanisms, but rather shall choose a model in which these are absent. 
The model will be a simple tight-binding model with one orbital per site. The density of 
states will be featureless with the Fermi level situated at the band centre where the 
density of states has a very weak energy dependence. The generalization to many-orbital 
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models has been discussed by Chitnavis and Raghavan (1983) and Mookerjee et a1 
(1985). 

As we have stated before, the use of the simple CPA to describe conductivity in 
situations near the Anderson transition is not valid. The CPA yields erroneous infor- 
mation in such regimes (Haydock and Mookerjee 1974), and grossly overestimates the 
mobilities. Generalization to cluster CPAS improves matters (Mookerjee et a1 1985, 
Mookerjee 1986) but as we are still unable to take into account large clusters, they 
overestimate mobilities. To  adequately treat sluggish electrons we have to improve our 
approximation to include the effect of the whole class of the so-called maximally crossed 
diagrams (Langer and Nkel 1966, Abrahams et a1 1979). We discuss this generalization 
within the augmented space formalism. Recently, Chitnavis (1985) reported a similar 
work based on the so-called travelling cluster approximation (TCA) of Mills and Rat- 
anavararaksa (1978), which is also based on our augmented space technique. In the 
static part of the augmented space this has similarities with our approach, but differs in 
specific details of approximation. 

The basis of our approach is the Kubo expression: 

on/' = dE(-af/aE)[S"['(E+, E ' )  - S"'(E' ,  E-)]dv (1) i: 
with 

S @ ( E , ,  E ? )  = ( j o  ; j i ' ) .  

The term with E ,  = E 2  = E+ is related to the particle-particle propagator, whereas the 
term with E ,  = E,' = E +  is related to the particle-hole propagator. 

By definition: 

( A ; B )  = (ih/;z) Re TrAG(E,)BG(E2) 

where G is the one-particle propagator, while the current term is defined by: 

j ' ( k )  = (e /h)V"H, , (k ) .  (2) 
Heref(E) is the Fermi distribution function and H o  is the translationally symmetric part 
of the Hamiltonian. 

The calculation of the configuration average of quantities like S""(E,, E2)  has been 
discussed in detail within the CCPA by Mookerjee et a1 (1985). Generation of scattering 
diagrams within the augmented space approach for the two-particle Green function has 
been discussed earlier (Mookerjee 1975b, 1976). A careful study of the topology of the 
scattering diagrams reveals that the dominant correction due to randomness in the 
current term arising from the off-diagonal disorder is a replacement of the undressed 
current j" by a renormalized current J" (Mookerjee 1986) given by: 

J " ( E , ,  E d  =j' + E " ( E , ) + E n ( E d + I ( E l ,  Ed&YY(E,)  . 
d 'k' 

Z(E, ,  E , )  = SC(k', E,(G(k', E > )  

Here G(k ,  E )  is the configuration averaged one-particle propagator, Z(k, E )  is the self- 
energy defined via the relation G = ( E l  - fi - Z)-' wherefiis the configuration average 
of the Hamiltonian. In all applications either E ,  = E ;  = E + ,  in which case the operator 
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6 is -Im[e.g. 6X = -ImX]; or E ,  = E 2  = E', in which case 6 is d/aE [e.g. 6 2  = d X /  
d E l .  

The calculation for lj"(k, E )  is closely related to that of the self-energy and has also 
been described in detail in the earlier work referred to for J'. The remainder of the 
correction involves a vertex-like term which is derived via the Ward identity from X ( z ) .  

The term [S"p(E, ,  E>)]  can be broken up into four distinct contributions: the Ziman- 
Drude term [ S $ f i ( E , ,  E 2 ) ] ;  the two contributions from the vertex corrections, one 
coming from the CPA scattering diagrams and the other from the related maximally 
crossed diagrams; and the remainder. In our approximation we shall neglect the last 
contribution. 

Let us now introduce the various two-particle propagators and vertex terms we shall 
use in our subsequent derivations and the relations between them. Unfortunately, the 
literature does not follow a consistent notation for these, so an initial definition is 
pertinent: 

[ S " W I ,  E ? ) ]  = c cJ~lll~!:,z,,,q~~l 3 . w ; q .  (4a) 
l l l l l  /I(/ 

G" is the two-particle propagator and J"  is the renormalized current term already 
defined. If we define g l ' ( E , .  E,) as the free two-particle propagator G ( E , )  @ G(E2) ,  
then the vertex correction r is defined as 

(4b) 

(4c) 

I1 I '  
~ , m i , p q  = g L , / q  + 2 

G,1811./Iq = g ~ : l l , / ~ q  + c c g!:,./~,~l,,i,~:Jl,/,. 

S~~r.pjrr/.iigiii.iq 
i] ki 

While the scattering vertex A is defined as: 
I1 

r /  il 

The vertex correction r is related to the self-energy 2 via the Ward identity r = S X / S C  
(Mookerjee 1976). We may easily check this diagrammatically if we read S/SG to be 
the operation of removing a C line from the diagrams for E ,  without breaking up the 
diagrams into two or more unconnected bits (Mookerjee 1975b). 

- m..: ..I' . . . .  - . .  . .  
...e.. . .  :*.. 

. .  . .  . 6 I66 - 
The CPA ladder diagrams for the averaged two-particle Green functions 

[S'L3(EI, E2)lav with the renormalized currents are shown in figure l ( n )  and the cor- 
responding maximally crossed diagrams are shown in figure l (b) .  We shall now consider 
an approximation for involving contributions only from the 1 CPA ladder diagrams of 
figure l(a) and the corresponding maximally crossed diagrams of figure l(b).  We have 

Using the equations (4a-c) and looking at the scattering diagrams we can easily see that 
the CPA contribution to r can be written in terms of a single-site scattering vertex Ai e.g. 
for the binary disorder problem = cAcB(EA - 

(sa)  r == r C P A  + ycr. 

Diagrammatically we have 

i 
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where the scattering lines represent all possible augmented space diagrams: 

+ - - - . . - 

j - .  . . . . . -2' 

- 
- 

Figure 1. (a )  cpAladder diagramsfor the two-particle Green function. ( b )  The corresponding 
maximally crossed diagrams. 

r::F = Aib~]  + 2 sf; i k r h X  I ] '  
h 

Looking at the scattering diagrams for r: 
i 1 . - j  

: - .  . - .  i i 
G O 1  = * + t . . . uncrossed r 
/ i 

I J 

: = '  
I rc .. 

J i 
1 - i  

c rossed  rcr  '*.. .. .a*"' + . . .  ==I= = 
i * .  ..: . J 

i - i 
r ; ; l l ( E l ,  E,)  may be directly related to its uncrossed CPA counterpart ri1,,,(El, E,) 

by the relation 

where the uncrossing operation x on any separable operator of rank 4 may be defined 
as follows: 

then 

rTji(E1, E ? )  = r:,,j(Ei, E ; )  (5c )  

A(EI3  E 2 )  = a(El) @ b(E2) so that A v . k n i  = a i k ( E l ) h , n i ( E 2 )  

A t , k m  = a , . , ( E , ) b n i k ( E ~ ) .  ( 5 4  
We note that the particle-hole vertex diagram is related by the uncrossing operation 

The contribution of the crossed diagrams may also be written: 
to the particle-particle vertex diagram and vice versa. 

11 ir = kig' '~ (I 11 ' k  i + k ,  gfi,kjrckj,,k (5e )  
k 

where g;,',, = Gi,Gjj(l  - 6,). The exclusion of i = j terms are necessary so as not to 
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double-count contributions between (5b) and (5e). Taking Fourier transforms in (5e) 
we obtain the following: 

Here, 

The contribution of the vertex correction coming from the crossed diagrams to Snp may 
be written as 

[S""(Ei, E2)lX = C C O ~ ( E i . E z ) r ~ , , ( E i , E z ) Q ~ ( E i ,  E,) 

Q ; ( E , , E ? )  = ~ ~ G , , ( E ~ ) - K , , ( E , .  E l )Gnu(E, ) ( l -a i , ) .  

Taking Fourier transforms and substituting into ( 6 d )  from (6a ) ,  (6b) and (6c )  we obtain 

( 6 4  1 1  

k ni 

d 3 k d ' k '  -11 8n388n3 [ S n q E , ,  E,)];: - J"(k. E , ,  E2)JI-'(k', E, ,  E , ) .  . . 

P ( k +  k' .  E , ,  E?)G(k ,E, )G(k ,  E 2 ) G ( k ' ,  E, )G(k ' ,  .E2). (6e) 
The contribution of the second term on the right-hand side of (6c)  vanishes in the 

1 CPA single-orbital model, as does the vertex contribution of the ladder CPA diagrams. 
In the multi-orbital case both terms lead to spurious infrared divergences which may be 
eliminated by correctly taking the thermodynamic and static limits (Chitnavis and 
Raghavan 1983). 

The Ziman-Drude term is: 

d 3k 
[S tp (E , ,  E211 = 1 s , l J " ( k ,  E , ,  El)JB(k, E , ,  E 2 ) G ( k ,  E,)G(k ,  E ? ) .  (7)  

It is instructive to replace (6) and (7) back into ( 1 )  and obtain the weak scattering 
limit at low temperatures. To do this we change the variables in (6e) to K = k + k' and 
K' = k - k' and expand u ( K ,  E , ,  E,) about K = 0 .  Keeping only the leading term in K' 
we may integrate out the K variable using an upper cut-off of K as K, ,  which is of the 
order of the inverse of the localization radius of the electron. 

U = (e2h2/4n){4(E,)/IIm X(EF)l - ( l / 8 d ) K i , }  

This is the correct form of the weak scattering limit with the crossed vertex correction 
(Economou 1983). 

We shall now introduce the effects of dynamical disorder within the augmented space 
technique as described in a previous work (I). We augment the Hilbert space X in which 
the Hamiltonian of the electron is described by another Qdy on which the thermal degrees 



Conductivity in dirty systems 9405 

of freedom are described. The augmented Hamiltonian is now constructed as described 
in I in some detail. We are modelling the thermal bath by an Ehrenfest bath, the simplest 
bath with a non-trivial memory function. We are interested only in qualitative aspects 
of dynamical disorder. More complicated baths like, e.g. the semi-Markov bath, have 
been described in some detail in the thesis of Paquet (1964). 

H = H~~ 8 I + I;: [AM(,) 8 P ,  + ~ w J ) ]  

F(‘) = I8 I @ .  . . 8 F,  8 . . . @ I .  
w i t h M ( ’ ) = I ~ Z @ . . . ~ M , ~ .  . . @ l  

(9) 
The representation of MI is tridiagonal with a,, = 0 down the diagonal and b,, = n 

down the off-diagonal positions, while F, are diagonal with eigenvalues -n / to .  In 
analogy with the static disorder case, any configuration average may be written as: 

[WH)I = (flW)if) (10) 
where ifi = no Iyil) / y o )  has a representation y*( r )  which is the stationary solution of 
the Fokker-Planck equation: 

V * [ v ( r ) y ( r ) ]  + +V’[d(r )y(r )]  = 0. ( 1 1 )  
v ( r )  and d(r) are the local velocity and diffusion constant terms. 

Since both M(” and F”’ are functions of the cardinality n ,  the self-energies, the Green 
functions and the vertex functions related to response functions are all cardinality- 
dependent. The concept of cardinality, i.e. the number of applications of the Ham- 
iltonian needed to obtain the given state from the so-called ground state, has been 
discussed earlier (I). Paquet and Leroux-Hugon has described in some mathematical 
detail the modification of equations (4)-(6) in the presence of cardinality-dependent 
augmented space, characteristic of the Ehrenfest bath. We shall quote here their per- 
tinent results. 

In the absence of cardinality dependence we obtain from (4a)  and ( 4 b )  the relation- 
ship between the vertex correction r and the scattering vertex A as 

r = ( I  - GCA)-‘A. (12a) 
Equation ( 4 b )  is modified to give 
Cll(t1) = g l I ( ? l )  + g l l ( ? l ,  I;: p . q j  S l l ( f l + l )  

‘I 
- g ~ ~ ( l ~ )  I;: r(ii q ) [ ~ ( i i + q j ~ ( ~ z + q )  8 ~ ( t , + 9 ) ~ ( t , + 9 j S l l ( , i + 4 )  

4 

- F(tIfq)R(tI) @ F(tl+‘I)R(”) S I  11(?1) (12b)  
where 

This is a generalization of (12a) and the scattering vertex A(”.‘/) is given by Paquet 
and Leroux-Hugon (1984) (equations (49)-(51) and (75)) in terms of the cardinality 
dependent t-matrices: 

( 1 2 4  ~ ( n , ( / )  = t t ~ . n + 9  @ t n + 9 . t ~  

The second term in (12b) describes correlated propagation of two particles, both of them 
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experiencing one  disorder excitation, while the third term corresponds to the difference 
between propagation of two particlesin the presence and absence of disorder excitations. 
In the absence of dynamic disorder (or in the static limit) this last term vanishes. This 
non-local term arises because two electrons at different times, on the same site, have 
their scatterings correlated if the time lapse between two collisions is smaller than the 
correlation time of the potential at that site. For very fast dynamics, the second term 
also becomes negligible, since the particles are not affected by the noise bath and move 
in an uncorrelated manner.  

As in the case of single-particle propagators (described in I), equation (12) shows 
that calculations of two-particle propagators are also in the form of recurrence relations 
which converge within a finite number of iterations in the regimes of interest. 

This formulation has several advantages. Firstly. i t  circumvents the usual difficulties 
with the CPA methods in describing sluggish electrons by incorporating the crossed 
diagrams. Secondly, in this particular form it is unnecessary to perform the complicated 
Monte Carlo simulations of GJ to obtain reasonable qualitative results. Furthermore it 
is unnecessary to restrict ourselves to Cayley tree lattices. All the Green functions and 
vertices may be easily obtained within the augmented space formalism for any realistic 
lattice by using the recursion method of Haydock et a1 (1972). The vertex terms which 
concern us may be obtained from the self-energies through the Ward identities. The 
estimates of GJ provide us with a valuable background against which to compare our 
work. 

3. Results and discussion 

We present here a calculation of the resistivity based on the preceding formulation and 
a simple, non-trivial model: a tight-binding Anderson model with one orbital per site on 
a simple cubic lattice with only diagonal disorder. The Hamiltonian may be written as 

H = E , I ~ ( ~ I  + 2 V ,  li)(il (130) 

with VI, being non-random and non-zero only between nearest neighbours. The diagonal 
elements E ,  are random and independently and identically distributed. We have chosen 
a semi-elliptic distribution to facilitate the calculations: 

P ( E , )  = (2/,2W')(W' - E ; ) ' ' ? .  (136) 
Wis the half-band width and the disorder parameter is defined as the ratio d = 1 W/2ZVl, 
where Z = 6 is the number of nearest neighbours. It is interesting to note that neither 
the shape of the distribution nor the lattice has any qualitative effect on the results. 

We  first calculate the self-energy within the CPA using both static and dynamical 
disorders, with the model electronic system in contact with an Ehrenfest bath. We  have 
assumed that the Fermi level lies at the centre of the band. For the cubic lattice the band 
centre has n o  special features. The  above choice is aimed at eliminating from our  results 
any effect due  to special features of the density of states at the Fermi level. Note,  
however, that the formalism does not require this assumption and remains equally 
tractable for any other choice. 

Figure 2 shows the plot of In p against the self-energy for various degrees of disorder. 
For small disorders, the conduction electrons at the Fermi level are extended and the 
Ziman-Drude term dominates. In this regime Mattheissen's rule is satisfied and the 
resistivity increases with temperature, giving rise to a positive TCR. For higher values of 
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Figure 2. (0) The log of resistivity against the self-energy due to dynamical disorder, for 
increasing disorder W / B  = 5.7 .9 .  11.  where W is the width of variation of the &values and 
B the bandwidth. ( b )  The thermal coefficient of resistivity (TCR) against the self-energy for 
the same four samples. Note that we have assumed that the total self-energy is the sum of 
self-energies due to the static and dynamical disorder. 

disorder, the conduction electrons at the Fermi level are sluggish, giving rise to a 
very high residual resistivity. In the low-temperature regime these systems show the 
characteristic minimum in the resistivity and an  anomalous negative TCR. This behaviour 
of the resistivity is qualitatively very similar to that of Girvin and Jonsson (1980). The  
quantitative numerical differences may arise because of the different estimates of the 
vertex correction in the two papers. This difference has been discussed earlier (paper I ) .  

The  above model serves to isolate the effect of dynamical disorder in giving rise to  
resistivity minima at low temperatures. In realistic Mooij alloys the formalism has to be 
modified, taking into account the various features discussed earlier in the text. The  
origin of the anomalous TCR may also not be unique but rather a combination of various 
effects already discussed. Our  formalism, wedded to the recursion method, provides a 
powerful tool for microscopic study of such alloys. 
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